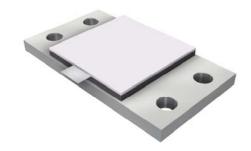
TERMINATION FLANGE MOUNT 800 WATT

DATA SHEET PART SERIES: 32-1199 Dwg 32-1199

EN 13-3519

FEATURES APPLICATIONS

Mobile Networks Tab Launch High Power Broadcast


Integrated Heat Sink **High Power Amplifiers**

Low VSWR Isolators Military Easy Installation

Instrumentation

GENERAL DESCRIPTION

EMC Technology offers the widest selection of flange mount terminations worldwide. High power flange components offer excellent performance and the convenience of bolt on installation.

ORDERING INFORMATION

Part Identifier: 32-1199

SPECIFICATIONS

1.0 ELECTRICAL

Nominal Impedance: 50 ohms Frequency Range: DC - 0.5 GHz VSWR: 1.30:1 Max

Input Power CW: 800 Watts @ 100 °C heat sink, derated linearly to zero power and 150 °C

Peak Power: 8000 Watts (based on 10us pulse width and 1% duty cycle)

DC Resistance: 50 Ω ±5%

2.0 ENVIRONMENTAL

-55°C to +150°C Operating Temperature: Non-operating Temperature: -65°C to +150°C +/-200 PPM / °C max Temperature Coefficient:

3.0 MARKING

Unit Marking: Logo and Part Number, legibility and permanency per MIL-STD-130

4.0 QUALITY ASSURANCE

Visual and Mechanical Inspection: Per 824W107

100% DC Resistance Check DC Resistance Check:

Data Retention: Standard

5.0 PACKAGING

Standard Packaging: Tray Packaging

smiths microwave Form 423F101

Rev-

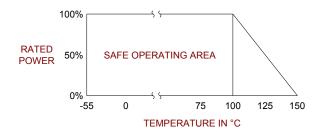
Cage Codes: 24602 / 2Y194 Specifications are Subject to Change Without Notice www.emc-rflabs.com • +1 772-286-9300

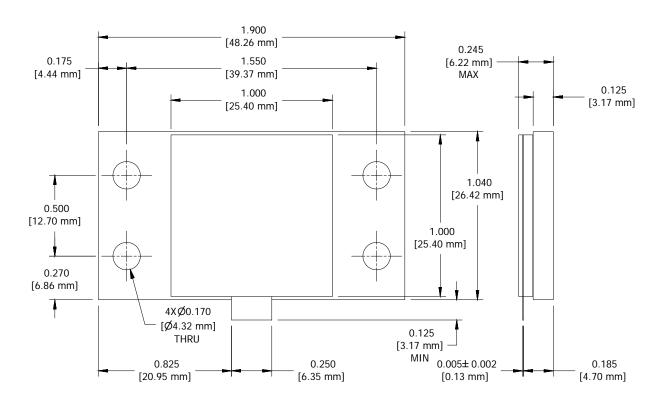
AS 9100, ISO 9001 and 14001 Certified

TERMINATION FLANGE MOUNT 800 WATT

DATA SHEET PART SERIES: 32-1199 SHEET 2 OF 2

Dwg 32-1199


EN 13-3519 Revision-


6.0 MECHANICAL

Substrate Material: Beryllium Oxide
Resistive Film: Nichrome
Cover Material: Alumina Oxide
Tab Material: Beryllium Copper

Tab Finish: Tin/Lead
Flange Material: Copper
Flange Finish Nickel

Metric Dimensions: Provided for reference only

Unless Otherwise Specified: TOLERANCE: $X.XX = \pm 0.02$ $X.XXX = \pm 0.010$