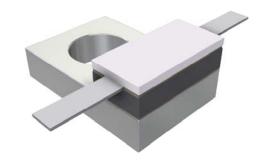
RESISTOR FLANGE MOUNT 10 WATT

DATA SHEET PART SERIES: 31A1006XXXF

SHEET 1 OF 2 Dwg 31A1006F EN 16-0345 Revision B

FEATURES APPLICATIONS

Tab Launch Broadcast


High Power Filters
Integrated Heat Sink
High Power Filters
High Power Amplifiers

Low Capacitance Isolators
Easy Installation Military

Wide Resistance Range Instrumentation

GENERAL DESCRIPTION

EMC Technology offers the widest selection of flange mount resistors worldwide. High power flange components offer excellent performance and the convenience of bolt on installation.

ORDERING INFORMATION

Part Identifier:

31A1006XXXF

LTolerance Resistance Value

SPECIFICATIONS

1.0 ELECTRICAL

Resistance Range: 2 - 480 OHMS

Resistance Tolerance: ±5% standard 1% and 2% available
Typical Capacitance: 0.8 pF 50 and 100 OHMS only

Input Power CW: 10 watts @ 100°C heat sink, derated linearly to zero power at 150°C

Peak Power: 100 watts (based on 10us pulse width and 1% duty cycle)

2.0 ENVIRONMENTAL

Operating Temperature: -55°C to +150°C

Non-operating Temperature: -65°C to +150°C

Temperature Coefficient: +/-200 PPM / °C max

3.0 MARKING

Unit Marking: Resistance Value; legibility and permanency per MIL-STD-130

4.0 QUALITY ASSURANCE

Visual and Mechanical Inspection: Per 824W107

DC Resistance Check: 100% DC Resistance Check

Data Retention: Standard

5.0 PACKAGING

Standard Packaging: Tray

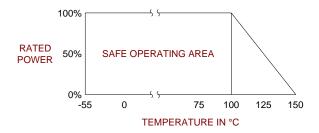
Smiths microwave Cage Codes: 24602 / 2Y194 www.emc-rflabs.com • +1 772-286-9300

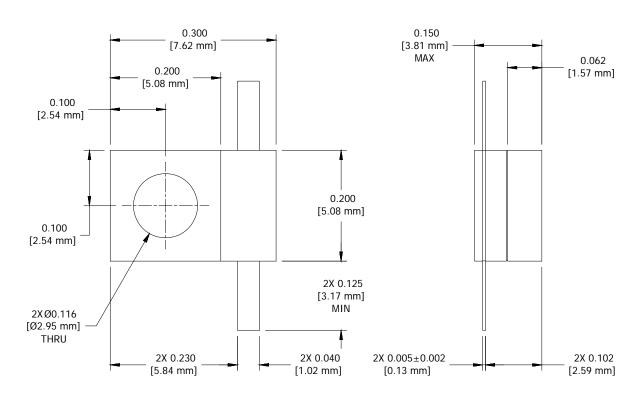
RESISTOR FLANGE MOUNT 10 WATT

PART SERIES: 31A1006XXXF

SHEET 2 OF 2 Dwg 31A1006F EN 16-0345 Revision B

6.0 MECHANICAL


DATA SHEET


Substrate Material: Beryllium Oxide

Resistive Film: Thin Film
Cover Material: Alumina

Tab Material:Beryllium CopperTab Finish:Silver PlatedFlange Material:CopperFlange Finish:Nickel

Metric Dimensions: Provided for reference only

Unless Otherwise Specified: TOLERANCE: $X.XX = \pm 0.02$ $X.XXX = \pm 0.010$