# MIL-DTL-38999 Quadrax

Smiths Interconnect offers a complete line of differential Quadrax connectors, contacts, and cable assemblies for high speed Ethernet, Firewire, and Fibre Channel applications. Differential pair quadrax connectors offer superior performance in high speed matched impedance data-ondemand applications. The signal to signal and signal to shield characteristic impedance is maintained throughout the connector pair.

#### **Quadrax Contacts**

Quadrax contacts consist of four center contacts (Quad configuration applications exceeding 2 Gbit/sec) forming two differential pairs within a common ground. These contacts have a low impedance grounding shield and are ideal for Ethernet 100 Base-T (100 ohm), Firewire (IEEE 1394A and 1394B), USB, DVI and infiniband.

Smiths Interconnect offers reverse gender Quadrax contacts to provide a more robust assembly for harsh environment applications. This alternative configuration places the stronger and larger diameter inner socket contacts within the more exposed Quadrax pin contact insulator. The more fragile inner pin contacts are then placed within the Quadrax socket contact insulator minimizing the potential of alignment damage due to mishandling on both sides. With this arrangement, Smiths Interconnect offers the most robust high speed Quadrax contacts available today.

### **Testing Capabilities**

Smiths Interconnect Quadrax and Twinax interconnects are characterized for testing eye pattern, jitter, skew, and insertion loss on differential pair 100 ohm high speed Gigabit Ethernet applications with a wide variety of testing protocols. We utilize the Agilent E5071C 4 port network analyzer to measure the differential pair TDR impedance between Twinax connectors, cable assemblies, and quad cable Ethernet and Fibre Channel interconnect systems ensuring the most accurate acquired signal for high speed communications testing. The E5071C 4 port network analyzer is capable of highly accurate 100 ohm differential measurements up to 20 GHz and can measure Eye Diagrams up to 16 Gbps.



#### **Specifications**

| Temperature Rating                   | -55°C to + 125°C                         |
|--------------------------------------|------------------------------------------|
| Corrosion                            | MIL-STD-202 Method 101, Test Condition B |
| Shock                                | MIL-STD-202 Method 213, Test Condition B |
| Vibration                            | MIL-STD-202 Method 204, Test Condition B |
| Thermal Shock                        | MIL-STD-202 Method 107, Test Condition B |
| Durability                           | 500 mate/unmate cycles/min               |
| Dielectric Withstand<br>Voltage      | 250 VDC                                  |
| Insulation Resistance                | 5.000 MegaOhms min                       |
| Contact Current Rating               | 3.0 Amps D.C. max                        |
| Bandwidth                            | Up to 3 GHz                              |
| Data Rates                           | Exceeding 2 Gbps                         |
| Differential Pair<br>Cable Impedance | 100 Ohm <u>+</u> 10 Ohm                  |
| Signal to Shield<br>Cable Impedance  | 50 Ohm <u>+</u> 7 Ohm                    |

## **Materials and Finishes**

| MIL-DTL-38999 Shells | Aluminum per ASTM-B211/221 6061-T6<br>Electroless Nickel per SAE AMS C-26074            |
|----------------------|-----------------------------------------------------------------------------------------|
| Insulators           | PTFE per ASTM-D1710<br>Ultem per ASTM-D5205                                             |
| Quadrax Contacts     | Brass per ASTM-B16, Alloy UNS C36000 or<br>BeCu per ASTM-B196, Alloy UNS C17200, C17300 |
| Notes                | Quadrax contacts are common ground                                                      |

### **Recommended Backshells**

#### M85049/21 (str) • M85049/88 (str) • M85049/89 (45° w/extender)

Smiths Interconnect only recommends the use of backshells that avoid tight bending radii or high compressive forces being applied to cables that may upset the high frequency performance of the connector cable assembly.

2