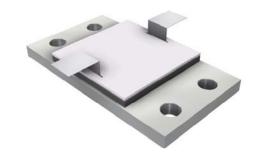
RESISTOR **FLANGE MOUNT 750 WATT**

DATA SHEET PART SERIES: 31-1054-X-X Dwg 31-1054

EN 13-3528

FEATURES APPLICATIONS

Tab Launch Broadcast


High Power High Power Filters Integrated Heat Sink **High Power Amplifiers**

Low Capacitance Isolators Easy Installation Military

Wide Resistance Range Instrumentation

GENERAL DESCRIPTION

EMC Technology offers the widest selection of flange mount resistors worldwide. High power flange components offer excellent performance and the convenience of bolt on installation.

ORDERING INFORMATION

Part Identifier:

31-1054-X-X

L Tolerance Resistance Value

SPECIFICATIONS

1.0 ELECTRICAL

4 - 400 OHMS Resistance Range:

Resistance Tolerance: ±5% standard 1% and 2% available

Breakdown Voltage: 4.0 KV

Input Power CW: 750 watts @ 100°C heat sink, derated linearly to zero power at 150°C

Peak Power: 7500 watts (based on 10us pulse width and 1% duty cycle)

2.0 ENVIRONMENTAL

Operating Temperature: -55°C to +150°C Non-operating Temperature: -65°C to +150°C Temperature Coefficient: +/-200 PPM / °C max

3.0 MARKING

Unit Marking: Logo and Part Number, legibility and permanency per MIL-STD-130

4.0 QUALITY ASSURANCE

Visual and Mechanical Inspection: Per 824W107

100% DC Resistance Check DC Resistance Check:

Data Retention: Standard

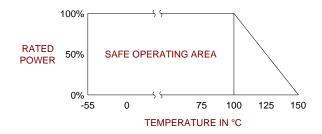
5.0 PACKAGING

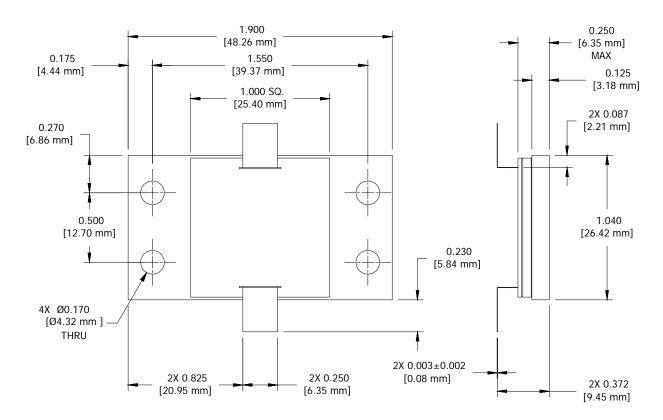
Standard Packaging: Tray

Cage Codes: 24602 / 2Y194 www.emc-rflabs.com • +1 772-286-9300 smiths microwave Specifications are Subject to Change Without Notice AS 9100, ISO 9001 and 14001 Certified

RESISTOR FLANGE MOUNT 750 WATT

DATA SHEET PART SERIES: 31-1054-X-X


SHEET 2 OF 2 Dwg 31-1054 EN 13-3528 Revision-


6.0 MECHANICAL

Substrate Material: Beryllium Oxide
Resistive Film: Nichrome
Cover Material: Alumina Oxide
Tab Material: Beryllium Copper

Tab Finish: Tin/Lead
Flange Material: Copper
Flange Finish: Nickel

Metric Dimensions: Provided for reference only

Unless Otherwise Specified: TOLERANCE: $X.XX = \pm 0.02$ $X.XXX = \pm 0.010$