This site uses cookies to store information on your computer. Some of these cookies are necessary for us to deliver this site to you, others help us to make sure you have an improved user experience on the Smiths Interconnect site and with our people. By using this site you consent to the placement of these cookies. Please read our cookie policy to learn more about our use of cookies.
Optical interconnect for high-speed, high- bandwidth 10GigE and 40GigE cameras used in machine vision.

Taking the Fast Bridge between Neural Networks

Neural networks have been around since the 1950s. The advent of fast, massively parallel processors like the Graphics Processing Unit (GPU) have made neural network applications like object recognition feasible. Neural networks are one means used to create Artificial Intelligence (AI). The latest iPhones now have an AI chip, primarily to offload face recognition tasks.1 Voice translation tasks would also benefit from an AI chip. Google provides voice translation as long as there is access to a cloud. The ability to translate directly from a phone without requiring Internet access to Google engines would be advantageous, and it’s possible that the iPhone is headed in that direction.

3U and 6U OpenVPX carrier cards for XMC , PMC and AcroPack I/O mezzanine modules (courtesy Acromag)

VPX Technology Development Trends

Security is a critical challenge for a wide range of embedded systems applications. System integrators must optimize operational capability, maximize competition for systems development, ensure interoperability, and maintain commonality to reduce life-cycle cost.

BGA electrical interface

Understanding the Test Criteria of Optical Fiber Transceivers Used in Space

In space, high performance components must be able to deliver reliably in the punishing environment. It is optical transceivers that drive transmissions, converting signals to and from a copper-resident format. Fiber optics communications provide high bandwidth and low latency signaling. Signal transmissions through fiber optic cables (FOCs) provide immunity to EM/RFI interference, crosstalk, and voltage level surges. Fiber optics’ accuracy and reliability exceeds traditional cabling. Covering 1,000 feet requires four pounds of FOC versus 39 pounds of copper wiring, and fiber optics also consume less energy than copper. To convert electrical signals from circuitries with copper output to fiber optics, optical fiber transceivers are usually required.