This site uses cookies to store information on your computer. Some of these cookies are necessary for us to deliver this site to you, others help us to make sure you have an improved user experience on the Smiths Interconnect site and with our people. By using this site you consent to the placement of these cookies. Please read our cookie policy to learn more about our use of cookies.
One World Web Coverage

The Internet of space and radiation hardened transceivers

We are on the verge of a new era of human connectivity and communications – the Internet of Space (IoS) is upon us. The explosion of worldwide communications over the past 25 years has led to the pervasive use of mobile and land communications equipment with an abundance of platforms, applications and devices all driving the growth of many of the largest businesses in the world. There is no doubt that this trend will continue through the Internet of Things (IoT), along with improvements to the underlying network infrastructure. However, the next, ‘Small Step’ for man in terms of ubiquitous communications will be the ‘Giant Leap’ into the Internet of Space.

Read more...
Space Flare

Optical Interconnect Design Challenges in Space

Aeronautical applications face many design challenges that are unique to their intended environment. The best practices for optical interconnect design for space applications include the use of radiation-resistant technology to defend against space radiation, the use of components and devices that are designed to operate in harsh environments, and meeting size, weight, and power (SWaP) and long-term reliability requirements. Finally, it is recommended to follow open standards like VPX and to look for solutions that comply with MIL and quality standards.

Read more...